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ON OPTIMAL STABILIZATION OF CONTROLLED SYSTEMS* 

A.P. BLINOV 

The motion is investigated of dynamic systems with optimal stabilizationinthe sense 

of the method in /1,2/ in the presence of modulus constraints on the controls. The 

result obtainedis applied to the optimal stabilization problem for the stationary 

motion of a satellite relative to the center of mass, located at a triangular libra- 
tion point of a two-body system /3/. For a certain class of asymptotically stable 
systems an estimate is given for the time after which the perturbed motion from an 

arbitrary point of the attraction domain falls into a prescribed region of the phase 

space, containing the unperturbed motion. 

1. We consider the equations of perturbed motion of the controlled system 

2 = x, (t, x) + 2 m,j(t,x)uj”(t,X) (s=l,..., n) 
3=1 

(1.1) 

Here X = (x1, . . ., x,,) is an n-dimensional real phase vector, $O(t, x),. . ., u,“(t, x) are the con- 

trols effecting the optimal stabilization of the unperturbed motion X = 0 in the sense of the 

method in /1,2/ with control performance index 

cc 

I =I [F(t, X [t]) + Z] dt, Z = i fiijUiU1 (1.2) 

to i.1=1 

F (4 x) = - w (t, x) f C”, z” = i 
i, j=l 

f3iju;uj 

,? is a prescribed positive-definite quadratic form with synmletric coefficients 

w (t, x) = dT;(t, x)ldt 
V(f, x) is a postive-definite Liapunov function admitting of an infinitesimal upper bound in 

the region 

t ; t,, Iz, 1 < I,, 1, = const > 0 (1.3) 

The functions X,(t, x), msj(t, x), uj”(t, x) are continuous and satisfy conditions ensuring the ex- 

istence and uniqueness of the solutions of Eqs.(l.l) under any initial conditions from region 

(1.3). The time derivative of function v(t,X) is taken in virtue of Eqs.(l.l) with UjOs 0, 
and by assumption w(t, x) is a negative-definite or constantly-negative function, while 
x, (t, 0) = 0. 

The optimal controls uj" are determined by the expressions (Akj are the cofactors of the 

elements fikj of determinant A) /l/ 

(1.4) 

k=, i-_L 

When the system being stabilized is autonomous, while the manifold ,JI of points x, definedby 

the equation 

W(x) ~ 28" = 0 (1.5) 

does not contain integral trajectories of (l.l), except x = 0, then Eqs.(1.4) ensure the 

asymptotic stability of the unperturbed motion. Expressions (1.4) were obtained without con- 

straints on the magnitude of the controls. If a modulus constraint 

1 MjOI < l&j, uoj = const > 0 (1.6) 

is imposed, then, in order that inequalities (1.6) not be violated during the stabilization, 

the initial perturbations x,, must be located in a sufficiently small neighborhoodofthe motion 

x = 0. We specify this neighborhood by the inequality II Xoll < P , where )( .I1 istheEuclidean 
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norm of the vector, and we estimate the quantity p. 

If system (1.1) is autonomous, while expressions 

I.% I < 1, (I, > 0, s = I,. . ., n), then the hyper-surfaces 

a region G containing the point x = 0 within it. By 

(1.4) have been defined in the region 

Uj” (X) = f U oj pick outinthephasespace 

aG we denote the boundary of region G 

and we can write the required estimate of the quantity p as an inequality 

aupy (x) <<'x",far (x) 
IlWzJ 

For a nonautonomous system (1.1) a similar estimate can be written as 

(x is the boundary of the intersection of the domains G(t) for t-> to). 

2. If the initial perturbations are arbitrary points of the domain 15, I< 1,, theninequal- 

ity (1.6) can be violated during the stabilization. The question arises on the preservation 

of the property of asymptotic stability of system (1.1) when constraints are imposed on the 

controls. 

Let us first consider this problem for the autonomous system 

~=x,(.)+~ m,j (x) uj (x) (s = 1, 2, . . . ( n) 
,=1 

(2.1) 

Let the constraints on the controls U, (x) be of the form 1 ur(x) I< U,j(x),where u,j(x) are func- 

tions positive and continuous in domain (1.3). It is natural to define the controls uj(x) in 

such a way that they deviate as little as possible from the values uj"(x), prescribed by rela- 

tions (1.4). This requirement is satisfied by the definition 

uj=qjujo, , 

q,= l7 I”i”I<uOj 1 UOj)Uj”l-‘T IUj"I>uOj 
(2.2) 

For a control of this form the right-hand sides of Eqs.(Z.l) are continuous in region (1.3). 

Therefore, the time derivative of the Liapunov function (Sect.1) relative to Eqs.(Z.l) is de- 

fined and continuous in this region and has the form 

Since 

~=w(x)=Q-- msjuj 
b=, ,=1 

n 7 

c 

av 
msI,r= -2 

c 
fiijuio (j = 1, . . . , r) 

(11, s 1= 
with due regard to expression (2.2) we can write 

$- = w (x) - 22” = w (x) - 250, 
T 

z”= 
c 

/3ijuiou,o, Z,“= i p..q.u.“uj 
i. j=1 

i jzl ‘1 ’ ’ 
(2.3) 

If W(x) is a negative-definite function, then the function specified by relation (2.3) isal- 

so negative-definite. Therefore, the unperturbed motion of system (2.1), (2.2) is asymptotic- 
ally stable. This conclusion can be extened to nonautonomous stabilizable systems for which 

the function W(x) is negative-definite. 

Let us now consider the case when the function w(x) is identically zero. If the quad- 
ratic form z" is positive definite relative to Uj’, then the test for the asymptotic stabil- 
ity of the unperturbed motion of system (2.1) is the absence of whole trajectories in the 
manifold MYdefined by the equation 2," = 0. It is clear that if the quadratic form is posi- 
tive-definite relative to ujo(j = I,..., r) for all x from the region Ix, l<Z,, then the manifold 
iM* coincides with the manifold ikidefined by Eq.Cl.5) with W(x)= 0. A test for the positive 

definiteness of this form is the Sylvester criterion applied to the symmetric matrix with 
elements Bij (4j + qj) (i, j = 1,. . ., r). Assuming that the condition for the positive definite- 
ness of the form Z, is fulfilled, we can conclude that manifold M*lies inside region G. 
But in this region there are no constraints on system (2.1). Therefore, M* cannot contain 
integral trajectories of system (2.1). Thus, if a dynamic system admits of an optimal stabil- 
ization in the sense of the method in /1,2/ in a region G,of the phase space, then in the 
presence of modulus-constraints on the control it remains stabilizable by controls of form 
(2.2) in this region and optimally stabilizable in some region GcG,. If a dynamic system 
has parameters which can be used as the stabilizing forces and if in this connectionnoenergy 



consumption is required in the saturation mode, i.e., when uoj = censt, then controls of form 
(2.2) are optimal in the sense defined. 

Letus consider an example of the optimal stabilization of the stationary motion of a 

satellite relative to the center of mass, located at a triangular libration point of a two- 
body system. The rotational motion of the satellite is characterized by the Hamiltonian /3/ 

HO = 

& ](p*- pm cos 8)cos cp - pe sincpsinO12+& pq2- 
prli- 

3 A-B 3 A-C -- 
2 AjC 

xA,2, -_- 
2 A+C XA$ X=(Ip-A)2$Y($)f.4)? 

AH = -COSW sin cp - sin* cos cp cos 0, A,, = sin* sin 0, ,2 = 60”. 

v = fn2’rn1 

(2.4) 

Here A,B and C are the principal central inertia moments of the satellite, rn,, n2 are the 
masses of bodies Ml; Mz,pg,pQ,pm are the canonic momenta conjugate tothe satellite's general- 

ized coordinates e,+,q relative to a rotating coordinate system Gxyz connected with bodies 

Ml and MP /3/. As the independent variable we take the quantity T = nt (where t is time, n 
is the mean orbital motion). The canonic equations of motion admit of a two-parameter family 

of solutions (&is a constant precession angle) 

e=xi2,cp=0,~=ry,,pe=0,p~=BBIA,p,=0 

$,, = &,,, + kn/Z (k = 0, 1, 2, 3), cm 2&, = - (1 + Y) / (211 - Y + 9) 

(2.5) 

(for the Earth-Moon system $'oO = 60"18'25"). 
For one of the solutions (2.5) let the stability conditions be fulfilled, according to 

which the angle $0 lies within the limits 60° to 90° when E>C>A (and within the limits 

150° to 180° when B>A > C) /3/. We set the problem of stabilizing the stationary motion 

selected by changing the satellite's moments of inertia, for example, by means of displacing 

the massive rods along its principal axes of inertia. Let v = (v,, v,, v3) be the variationofthe 

positions of the centers of mass of the rod relative to the stationary value. Then the 

Hamiltonian can be written as 

(2.6) 

f3 (v) = (A,, - C, - h,u, + ho, - m,Q + m&) f-’ (4 - (A, - Co)/ 

(A, + Co) 

Here m,, m,, ms are the masses of the rods displaceable along the axes O%',Oq',O(p'respectively, 

of the satellite's natural coordinate system (a pair of like rods is located on each axis 

symmetrically relative to the satellite's center of mass); 4, b,, bs are the distances of the 

satellite's center of mass to, respectively, the centers of masses m,,m~,m,; A,=A,Bo=B,Co= 

C for u1 = q = vg = 0. Under the relations 2A,2-ZA,B,-AAoCo-Coe#0,, necessarily fulfilled 

under the problem's conditions, there holds the inequality det [d (f,, fn, fJ)/a (ul. u,, us)] # 0, so that 

we can consider the problem of optimal stabilization the stationary motion, having taken 

ui=fi(V) as new controls in a sufficiently small neighborhood of zero. Taking motion (2.5) as 

the unperturbed one, we introduce new values of the coordinates and the momenta by the rela- 

tions 8= ~/z+%~, rp=cpO+ %z, cp= %$, pe= ql,p$= B,IA,+ qe,prp= qs. For the equations of motion of 

the perturbed system 

(2.7) 

the Hamiltonian iS 
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Here and henceforth we omit the index zero in the notation of the moments of inertia. The 

dots denote summands of higher than second order in the variables %i,fli, while the explicitly 

written out quadratic part is assumed positive-definite. 

The control's performance index can be taken as 

Taking HI0 as the Liapunov function for system (2.7) when ui=O, we set up the expression 

B [HI”, 5, % ~1 = 5 (api + Bpi2) + P (E., q) 
i=* 

(2.8) 

From the expressions aBlaui = 0,~[H,“,~,q,~~]=O,we determine the required controls and the func- 

tion F(%,v) 

(2.9) 

The function F(%,q) is positive-definite with respect to ai, while, in general, it is sign 

positive with respect to the variables %i.q<. 

In order to be convinced that the control (2.9) found indeed does stabilize the motion 

of the perturbed system, we verify the absence of intkgral trajectories of system (2.7) in 

the manifold defined by the equations 

a1 = A;&, = a3 = 0 (2.10) 

(the factor A,,o+O occurs in the expression for a*) . Relations (2.10) can be treated as a 

system of linear equations relative to tlH,'iaqi(i= 1,2,3). In a neighborhood of the solution 

%i = n< = 0 

det~~~A~~~=9~\o?sin'rg,[(--hl+vh,)sin~,+A,~cos~,]+~(1)#O 
1, 2, 3 

Therefore, the system has a unique solution. In particular, 

aH,'iQl = (A/B) ctg$, (an%, + am%, + 'ls) + ‘7 
which does not correspond to the value of affIolaq, for the given Hamiltonian H,C. Consequently, 

manifold M does not contain integral trajectories (except the trajectories %,=q, = O), while 

the control (2.9) is optimal in the sense of the method.in /1,2/. Controls (2.9) are con- 

strained because of the restricted telescoping of the rods. Since here fiij= 0 for i#i, the 

manifolds M* and M coincide andthe controls of form (2.2) stabilize the stationary motion 
(2.5) for any initial conditions from the region of possible librational motion of the satel- 

lite. 
When the dynamic system's stabilization must be effected by the application of external 

forces economical from the point of view of energy consumption the control can be: z&j = zq” 

if [ uIo 1 < uol,. . ., ( u,” I< u,,~; Uj = 0 if 1 uio I> uoi for at least one number i = 1, 2,. ., r. Such 
a control will be a stabilizing control for initial perturbations x,, which lie on the 

trajectories of the dynamic system in the absence of controls intersecting regions G, and 

will be optimal in the sense that it minimizes each summand in the sum 
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for the time intervals (t,,_,, tz,) on which uj = ujc, while energy consumption is not required 
in the other time intervals. 

3. In some cases, using Liapunov's second method, we can make an estimate, important 
in practice, of the time in which the system to be stabilized (or the asymptotically stable 
system) falls, from an arbitrary point x0 in the domain of attraction of the unperturbedmotion, 
into a specified region Go containing this unperturbed motion. As a matterof fact,let V(t, x) 
be a positive-definite Liapunov function admitting of an infinitesimal upper bound, whose 

time derivative relative to the equations of perturbed motion is a negative-definite function 

w (& x). Then for the prescribed region G, we can choose a positive number V, such that the 

region G bounded by the surface V(t, x) = V, will lie in region Go when t 2 t,. 

We define a region G, demarked by the surface V(t, x) =x0 as time t varies on the in- 

terval [to,cu), or some majorant of such a region. In the region G, \ G,, t;‘_ to, we determine 
the minimum value h of the function 1 W(t, x) I. Let T be the timeinwhichthe function V(t, s) 
decreases from the value V, to the value I/,; then there holds the relation 

tS+T 

Vo-Vi=- s PV(t,x)dt>hT 
tl 

from which we obtain the required estimate T<(V, - V,)/h. In the case when the asymptotic- 

ally stable system admits, in the domain of attraction, of a manifoldM defined by the equa- 

tion dVJdt z 0, the problem of estimating T becomes complicated. Let us solve this problem 

for the asymptotically stable motion of the second-order system 

dx,ldt = X, (xl, x,), dx,ldt = X, (x,, x2) (3.1) 

In order to make certain preliminary estimates we introduce the polar coordinates r and t3 by 

means of the substitutions x1 = rcos8, xz = rsin0 and we write Eqs.(3.2) in the new coordinates 

after expanding the right-hand sides in powers of r 

drldt = R, (f3) + rR, (0) + r2R, (0) + (3.2) 

dWdt = 6, (0) + rfbl (0) + r’6, (0) + . . (3.3) 

We assume the power series to be convergent uniformly relative to BE lo, 2~1 in the circle 

r< rm containing the region G,. If in these series cos0 (or sin@) occurs to an even power, 

then after the change of variable 

sin 0 = z (or cos tl = 2) (3.4) 

the coefficients Ri(z),ej (z) will be certain polynomials in z. Further, we shall reckon that 

z is a complex quantity. 

By the problem's conditions integers k,, k, exist for which the inequalities 

/ &, (4 I = I R, (z) + rR, (z) + . . -t rki Rkl (z) j > I +‘I+’ Rh.,+l (2) + . . . I (3.5) 

I PK~ (z) I = 16, (z) + r6, (z) + . + rh, Hh.2 (z) j > I rk2+l Rh.,+, (z) -i_ . j 

are fulfilled for IZ I = 1 for any r<r, . According to the Rouche theorem we can conclude 

that the numbers of zeros of the functions p,(z) =R,(z) +rR,(z) + ..., P, (2) = zto (2) + rlY, (2) -I- 

in the region Iz I( 1 equal, respectively,the numbers vl,yZ of zeros of the polynomials Pr,, 

Pkr. Hence, onthesegment I Rez I.(.1 the numbers of zeros of the functions P,(z), PZ(z) are 

estimated by the inequalities 

n, ,S 2Y1 + 2, ?22 = 2Yz + 2 (3.6) 

If sine and cos8 occur in the right-hand sides of Eqs.(3.2), (3.3) both to even as well as 

to odd powers, then the change of variable (3.4) leads to the appearance in COeffiCientsfii(z), 

@i(z) of the radical -r/l. This complicates the choice of the numbers k,,k, for expres- 

sions of form (3.5) in view of the slow convergence as I Rez I -1 of the power series re- 

presenting this radical. Therefore, we divide the domain [0,2n] of the variable 0 into the 

intervals 

(- n/4, n//l), (h/4, 5nl4), (n/4, 39-c/4), (5nl4, 7n/4) 

On the first two intervals we define a change of variable z = sine, while on the second two 

intervals, z = cos 8. In both cases j Rez 1(1/1/y; therefore, the expansion of the radical 
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1/l -_z converges rapidly and we can estimate the summands in form (3.5). In the latter case 

we obtain the estimates 

%< 2 (n,, + n,,) + 4, % < 2 (%I + $2) + 4 (3.7) 

for the numbers n,, n2 of zeros. Here a,,, &I are the numbers of zeros of the polynomials 

Pa(z), &(z) under the change of variable z = sin 8 and nm, nz2 are the numbers of zeros of the 

polynomials &,, Pa,(z) under the change z = cos 0 in the region 1 z I< 1. We note that the 

derivative d0ldt does not vanish in the region G, if it does not vanish for I3 = 0, f n:2, n, 
n 21 = nz2 = 0, r < rm. 

Let the phase trajectory Y pass at t = 0 through the point x=x0 of the boundary aG,, 

of region G,. If in region G, the derivative dO/dt does not vanish, then, obviously, for a 

single circuit aroundtheorigin the estimate 

J, = J (aG,) + n, (r,,, - p (0, aGo)) > J (yl) > I, = max {p (q,, aGo), J @Go*)) 

holds for the length J(Vl) of a piece of the trajectory yl. Here ['(A,, A,) is the distance be- 

tween sets Arand A,; J (8G,), J (dG,*) are the lengths oftheboundaryofregion G, and of thebound- 

ary of the convex hull G,* of region G,. Then the time t* for one circuit of the represent- 

ative point around the origin satisfies the inequality 

t, = J,lu, < t* < J&J, = t, 

VI = XEy=G 1/X? (4 + x2* (4 

0% = m& 1/X?(x) + x2 (4 
m o 

A piece of the trajectory y1 can intersect the curves M defined by the equation dVldt 

= 0. Forasufficientlysmallvalueofthenumber E> 0 these curves will be contained in a 

region G, bounded by the curves MI and M2 defined by the equation dV/dt = - E. The set G, n 

G,\G, is the union of several connected regions. For the values 8 = 81,82,...,8m let the 
nomlal to curve Mpass through the origin. Then these normals separate the set G, n Gm\Go 

into m simply-connected domains D,,D,,..., D,. We remark that the curves M may not pass 

through all the domains Di. For each of the domains Di we can detemune the minimum value 

of the phase velocity vzi > vz> 0 and give an estimate of the largest length hi of the phase 

trajectory, at least for a sufficiently small s. The total time of motion of the represent- 

ative point in the set G, n G,\G, for a single circuit around the origin does not exceed 

the quantity 

r= ; h&i 
1=1 

while the time of motion on the remaining parts of curve yr is not less than z* = t, - T. 
Let us further assume that the phase trajectories in the region G, \ Go are not tangent 

to curves M. Then z-t0 as E+O, and for a sufficiently small e we have T* >O. In time 

t* the value of the Liapunov function decreases by the amount AV = V (x0) - V (x (t*)) 2 et*. 
Therefore, in the whole time T of motion up to falling into region Go the representative point 

accomplishes no more than n = [(V, - V,)/ (ET*)] + 1 circuits around the origin. Consequently, 

T < nt,. In case the derivative &I /dt has nz zeros in the region G,\ Go, the estimate of 
time T obviously has the form T< n(n,+ i)t,. 

The author thanks V.V. Rumiantsev and V.A. Samsonov for attention to the work and for 
useful advice. 
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